
Magnetic-field dependence of quasiparticle interference peaks in a d-wave superconductor
with weak disorder

T. Pereg-Barnea1 and M. Franz2

1Department of Physics, The University of Texas at Austin, Austin, Texas 78712-1081, USA
2Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada V6T 1Z1

�Received 26 February 2008; revised manuscript received 18 June 2008; published 21 July 2008�

Quasiparticle interference in a d-wave superconductor with weak disorder produces distinctive peaks in the
Fourier-transformed local density of states measured by scanning tunneling spectroscopy. We predict that
amplitudes of these peaks can be enhanced or suppressed by applied magnetic field according to a very specific
pattern governed by the symmetry of the superconducting order parameter. This calculated pattern agrees with
the recent experimental measurement and suggests that the technique could be useful for probing the under-
lying normal state at high fields.
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There now remains little doubt that hole-doped cuprate
superconductors below their critical temperature Tc form a
rather conventional BCS superconducting �SC� state charac-
terized by a spin-singlet d-wave order parameter. The key
mystery in the field is the nature of the state that occurs when
superconductivity is suppressed by underdoping, magnetic
field, or temperature.1 Recently observed quantum oscillation
phenomena in high magnetic fields2 indicate a metallic state
with small Fermi pockets which appear incompatible with
the standard band-structure calculations. These results are
also difficult to reconcile with the angle-resolved photoemis-
sion spectroscopy �ARPES� data,3,4 which instead imply
“Fermi arcs,” i.e., disconnected segments of a Fermi surface
that appear above Tc close to the nodal points of the d-wave
order parameter.

It is possible, in principle, that the normal state reached by
the applied magnetic field is different from the state above
Tc. However, since ARPES cannot be performed in high
magnetic fields and quantum oscillations are difficult to de-
tect at elevated temperatures, another technique is needed to
settle this puzzle. A good candidate is the scanning tunneling
probe which can be applied at finite temperature as well as in
the presence of magnetic fields.5 The recently perfected tech-
nique of Fourier-transform scanning tunneling spectroscopy
�FT-STS� allows extracting the Fermi surface from the dis-
persion of the quasiparticle interference peaks6–8 and yields
results in good agreement with ARPES.

In this Rapid Communication we take a first step in this
direction by studying theoretically the effect of relatively
weak magnetic fields �such that the sample remains in the
superconducting state� on the quasiparticle interference pat-
terns observed in FT-STS. We find that the field causes
strong enhancement of a subset of the interference peaks that
are observed in zero field. The pattern of enhancement, illus-
trated in Fig. 1, is closely related to the d-wave symmetry of
the superconducting order parameter and agrees with the re-
cent measurements performed by Hanaguri et al.9 This
agreement exemplifies our level of understanding of the qua-
siparticle dynamics in cuprates and lays the foundation for
future studies in much stronger fields.

In our subsequent discussion we focus on the quantity
Z�k ,�� measured recently by Hanaguri et al.9,10 defined as
the spatial Fourier transform of the ratio

Z�r,�� =
g�r,��

g�r,− ��
, �1�

where g�r ,�� is the tunneling conductance dI /dV measured
at point r of the sample at bias ��. A key advantage of
considering the ratio Z�r ,�� is that the unknown tunneling
matrix element connecting g�r ,�� to the local density of
states �LDOS� n�r ,�� drops out �provided that it is a slowly
varying function of �� leaving behind the ratio of the local
density of states which contains information on the intrinsic
electronic state of the system.

There are two very interesting aspects of the above
measurements:9 �i� The quasiparticle interference patterns in
Z�k ,�� are even clearer and more striking than those ob-
served in g�k ,�� in the same sample, and �ii� the patterns in
Z�k ,�� are sensitive to the applied uniform magnetic field in
the range 0 to 10 T. More specifically, with the increasing
field intensities of various interference peaks vary in a very
specific way. In what follows we formulate a theory of this
field-induced variation.

The LDOS in a material can be decomposed into two
parts,

n�r,�� = n0��� + �n�r,�� . �2�

The first part is uniform in space, reflecting the physics of a
perfectly homogeneous native material and, for a d-wave SC,

a) b)

+

+

− −

q

q
q

q
q

q

4q
5

6

1

3

2

7

FIG. 1. �Color online� �a� Contours of constant quasiparticle
energy �=0.1t in a d-wave superconductor in the first Brillouin
zone. We use a standard tight-binding lattice model �Ref. 13� with
t�=−0.3t, �0=0.2t, and �=−t. �b� Positions of the quasiparticle
interference peaks resulting from the octet model downfolded to the
first Brillouin zone. The peaks enhanced �suppressed� by the mag-
netic field are marked by solid �open� circles.
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is a V-shaped function of �. The second part describes inho-
mogeneity due to disorder. As discussed extensively in the
literature, the structure of the quasiparticle excitation spectra
together with the BCS coherence factors cause the Fourier
transform of �n�r ,�� �which we refer to hereafter as FT-
LDOS� to comprise a collection of sharp peaks.11–13 The lo-
cation of these peaks and their dispersion as a function of �
can be understood from a heuristic octet model6 based on a
set of eight points in the Brillouin zone at the tips of the
banana-shaped contours of constant energy illustrated in Fig.
1�a�. A peak in FT-LDOS will appear at momentum qi if it
connects any two of the octet points.

To gain theoretical insight into the structure of Z�r ,�� we
now substitute Eq. �2� into Eq. �1� and expand to leading
order in �n

Z�r,�� � Z0����1 +
�n�r,��
n0���

−
�n�r,− ��
n0�− �� � , �3�

where Z0���=n0��� /n0�−��. Equation �3� should be an ex-
cellent approximation as long as ��n�r ,���� �n0����, a con-
dition well satisfied for the data under consideration.10 We
are interested in the spatially varying part �Z�r ,�� of the
above expression. It is useful to recast it in the following
way:

�Z�r,�� = C1����ne�r,�� + C2����no�r,�� , �4�

where �ne�o� represents the part of �n even �odd� in � and
C1�2� are r-independent functions of frequency.

The above even/odd decomposition facilitates the follow-
ing key observation. As pointed out by Chen et al.,14 for a
strictly particle-hole symmetric system, �no originates exclu-
sively from the scattering in the particle-hole channel �i.e.,
ordinary potential scattering� while �ne comes from scatter-
ing in the particle-particle channel �i.e., modulation in the SC
order parameter�. Cuprates are of course not strictly p-h
symmetric but nevertheless they are sufficiently close to the
p-h symmetric situation that the above classification holds to
a very good approximation.14 In the absence of the magnetic
field disorder in the sample gives rise to ordinary potential
scattering as well as off-diagonal scattering caused by local
suppression of the SC gap amplitude by pair-breaking impu-
rities. Thus, �n has, in general, both even and odd contribu-
tions, even in the strictly p-h symmetric case.

When the magnetic field is applied to the sample in excess
of the lower critical field Hc1 the sample enters the mixed
state and Abrikosov vortices appear. If there is significant
randomness in the Abrikosov lattice then vortices cause ad-
ditional quasiparticle scattering due to �i� the suppression of
the order parameter in the vortex core and �ii� the superflow
associated with the screening currents outside the cores.
These effects both contribute to scattering in the particle-
particle channel and thus predominantly affect �ne. Ordinary
potential scattering, by contrast, should be largely unaffected
by the magnetic field. We thus expect the magnetic field to
enhance �ne but leave �no largely unchanged.

In the following we shall explicitly calculate �n�r ,��
caused by the order parameter suppression in the vortex core,
which we believe is the dominant effect of the magnetic

field. We verify that it is indeed predominantly even in fre-
quency in the vicinity of the p-h symmetric point and ana-
lyze in detail the spatial structure of the resulting interference
pattern reflected in Z�k ,��.

The local density of states in a superconductor is given by
n�r ,��=− 1

� Im G11�r ,r ;�+ i��, where G�r ,r� ;�� is the full
electron Green’s function, a 2	2 matrix in the Nambu-
Gorkov space. For weak impurity scattering the FT-LDOS
can be calculated using the Born approximation12

�n�q� = −
1

�
V
�q�Im�

k
�G0�k��
G0�k − q�	11, �5�

where �
 are Pauli matrices in the Nambu space, and V
�q�
is the Fourier transform of the random impurity potential in
the charge �
=3� and spin �
=0� channel. The k summation
extends over the first Brillouin zone and the frequency argu-
ments have been suppressed for brevity. G0 denotes the un-
perturbed Green’s function

G0�k,i�� =
1

�2 + Ek
2
i� + �k �k

�k i� − �k
� , �6�

with �k as the band energy measured from the Fermi surface,
�k as the gap function, and Ek=��k

2+�k
2.

The LDOS modulations �n�k ,�� due to impurity scatter-
ing have been extensively studied11–13,15,16 based on Eq. �5�
as well as more accurate t-matrix calculations. Comparison
to a series of atomic resolution FT-STS data6–8 shows good
qualitative agreement in terms of peak positions and disper-
sions.

When considering scattering off of spatial modulations of
the SC order parameter such as those occurring near the vor-
tex core, one might expect that a formula just like Eq. �5� but
with off-diagonal Pauli matrices �
=1,2� should be appli-
cable. This would indeed be the case for a simple s-wave
superconductor. In the case of a d-wave order parameter the
situation is slightly more complicated.15 This is related to the
fact that the d-wave order parameter is most naturally de-
scribed as living on the bonds of the underlying square lat-
tice. Correspondingly, a pointlike perturbation will be a gap
modulation ��i that affects four bonds emanating from a
single site ri. A general gap modulation can be thought of as
a sum of these pointlike modulations.

To formulate this we consider a perturbation described by
the Hamiltonian

�H =
1

2�
i,�

��i��c↑�ri�c↓�ri + �̂� − c↓�ri�c↑�ri + �̂� + H.c.	 ,

�7�

where c��r� represent the electron annihilation operators, �̂
= � x̂ , � ŷ, and �=1 for x-bonds and −1 for y-bonds. For
simplicity we consider ��i real. If we define the usual
Nambu spinor operator ��ri�= �c↑�ri� ,c↓

†�ri�	T we may write
�H=�k,k��k

†Vkk��k� with

Vkk� = �1��k−k��k + k�� �8�

where k=cos kx−cos ky is the Fourier transform of �. Had
we allowed ��i to have an imaginary part there would be an
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additional component of Vkk� proportional to �2.
Within the Born approximation we thus have the follow-

ing vortex-induced LDOS modulation:

�n�q� = −
1

�
Im�

k
�G0�k�Vk,k−qG0�k − q�	11. �9�

If we now identify ��q with V1�q� we see that indeed this
result has the form of Eq. �5�, except for the factor �k
+k−q� implied by Eq. �8� that reflects the d-wave symmetry
of the order parameter. Using Eqs. �6� and �8� we may fur-
ther rewrite �n�q ,��=− 1

���q Im ��q ,�+ i�� with

��q,i�� = �
k

�+ + −�
�i� + �+��− + �i� + �−��+

��2 + E+
2���2 + E−

2�
, �10�

and ��=�k�q/2, etc.
In the particle-hole symmetric limit, the terms with ��

vanish upon the momentum summation. To see this note that
in this limit the band energy has the property �k+Q=−�k for
Q= �� ,��. Since k and �k also share this property �irrespec-
tive of p-h symmetry� it follows that shifting the summation
variable by Q reverses the sign of ��, which therefore vanish
in the sum. In the p-h symmetric case we are thus left with

��q,i�� =
1

�0
�

k

i���+ + �−�2

��2 + E+
2���2 + E−

2�
, �11�

where we expressed the gap function as �k=�0k. As will be
evident shortly, the remaining expression is even in � when
analytically continued to real frequencies.

We now wish to examine the effect of this contribution on
the quasiparticle interference peaks that are predicted by the
octet model. To this end it is useful to perform analytical
continuation and explicitly evaluate − 1

� Im ��q ,�+ i�� at
wave vectors qij =Qi−Q j, where Qi are the octet vectors.
This yields

1

�0
�

k
����� − Ek�P ��k−q + �k�2

�Ek−q
2 − Ek

2�
, �12�

where P denotes the principal part. It is clear that for q
=qij the largest contribution to the sum comes from the vi-
cinity of k=Qi ,Q j. Near these points the denominator ap-
proaches zero but the numerator is a slowly varying function
of k. We may thus approximate the latter by its value at k
=Qi ,Q j and take it outside of the sum. We thus obtain

−
1

�
Im ��qij�  ��i + � j�2 1

�0
�

k
P

����� − Ek�
�Ek−qij

2 − Ek
2�

, �13�

where �i denotes �q evaluated at the octet vector Qi.
The above Eq. �13� has some remarkable implications and

represents our main result. Most importantly it implies that
in the p-h symmetric case the effect of the applied magnetic
field on the octet vectors can be summarized as

�ne�qij,�� � ��i + � j�2Kij��� . �14�

Here Kij��� denotes the sum in Eq. �13� and can be shown to
represent a positive quantity whose precise value for a given
frequency and vector qij depends on the details of the under-

lying band structure and is thus nonuniversal. The factor
��i+� j�2 is, by contrast, universal and depends only on the
symmetry of the SC order parameter. Since the octet points
lie on the Fermi surface of the underlying normal metal it is
easy to see that ��i�= ��� for all i’s. The sign of �i, however,
depends on the position of Qi in the Brillouin zone as illus-
trated in Fig. 1�a�. It then follows that

�ne�qij,�� � �4�2Kij��� , if sgn �i = sgn � j

0, if sgn �i � sgn � j
� . �15�

Thus, remarkably, we find that only those interference peaks
will be enhanced by applied magnetic field whose wave vec-
tors qij connect octet points in the regions of the Brillouin
zone with the same sign of the gap function �k, denoted by
+ /+ and − /− in Fig. 1�a�. These are q1, q4, and q5. The
remaining + /− peaks will be to leading order unaffected. The
resulting pattern is illustrated in Fig. 1�b�. We remark that
these are precisely the peaks observed to be enhanced in the
experiments by Hanaguri et al.9

If the system breaks the p-h symmetry, as is generally the
case in cuprates at finite doping concentration, then the
above conclusion cannot be formulated as a precise symme-
try statement. However, as long as the p-h symmetry break-
ing remains relatively weak, as is the case in cuprates close
to half filling, our result �Eq. �15�	 will hold to a good ap-
proximation: The + /+ and − /− peaks will be significantly
enhanced while + /− will be affected only slightly. This can
be seen by analyzing Eq. �10�. Even when p-h symmetry is
weakly broken we can still write it as Eq. �11� plus a correc-
tion that will be odd in frequency. This correction will be �i�
small compared to the leading term by factors of � / t and
t� / t, where � is the chemical potential and t, t� are nearest-
and next-nearest-neighbor hopping amplitudes, and �ii� will
contain a factor ��++�−� which will make it very small for
the + /− peaks, as before.

In order to ascertain the validity of our above conclusions
we have evaluated the sums indicated in Eq. �10� numeri-
cally for band structures with realistic parameters. This is
illustrated in Fig. 2. We have also analyzed these expressions
within the nodal approximation along the lines of Refs. 13
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FIG. 2. �Color online� Enhancement of FT-LDOS peaks by
magnetic field at octet vectors qi modeled by Eq. �10� with the band
structure as in Fig. 1. In the calculation the field H is represented by
the vortex core scattering rate V1 and H0 is chosen such that
H /H0=V1 /V3. The data are normalized to the H=0 value which we
model by V1=0 and V3�0, i.e., charged impurities only.
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and 15. These considerations confirm that Eq. �15� is an ex-
cellent proxy for Eq. �10� when the p-h symmetry is present
as well as when it is weakly violated, as in the superconduct-
ing state of cuprates. Specifically, we find that magnetic field
enhances the peaks at q1, q4, and q5, while the remaining
peaks are essentially unaffected. This pattern of enhancement
remains surprisingly robust even when the p-h symmetry is
significantly violated as in Fig. 2.

Hanaguri et al.9 reported that the + /+ and − /− peaks are
enhanced by the applied magnetic field and the + /− peaks
are in fact reduced in amplitude. This can be reconciled with
our theoretical prediction when we recall that our model ex-
plicitly treats only one aspect of the field, namely the sup-
pression of the order parameter in the vortex cores. Magnetic
field also generates superflow which is known to produce a
Doppler shift17 and a more subtle Berry phase18 effect on the
quasiparticle wave functions. Since these are both long-
range, nonlocal effects, their impact on the quasiparticle in-
terference patterns is significantly more difficult to compute.
It appears to us likely, however, that the additional phases
acquired by the quasiparticles as they propagate on the back-
ground of the random vortex array will tend to scramble the
interference patterns and therefore suppress the peaks. We

thus hypothesize that a combination of this suppression of all
peaks and the enhancement of + /+ and − /− peaks due to the
vortex core scattering will lead to the pattern observed in
experiment.9

Our results here underscore once again the importance of
the quasiparticle coherence factors13 for the tunneling inter-
ference spectroscopy. Indeed, the pattern of the peak en-
hancement by magnetic field found here is determined solely
by the coherence factors. Their presence, manifested in the
peaklike FT-STS patterns, indicates pairing even in magnetic
field. Our results, in conjunction with experimental data,9

also illustrate the remarkable sensitivity of the FT-STS tech-
nique to relatively modest magnetic fields up to 10 T. This
suggests good prospects of FT-STS for unraveling the mys-
tery of the normal state reached at higher fields or tempera-
tures.
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